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1 The Challenge

Current state-of-the-art global ocean models, such as LANL’s POP (Parallel Ocean Pro-
gram), have been ideally suited to answering climate questions over centuries long timescales
and under coarse resolution. With the aid of increased computational capabilities, these
“primitive equation” models are increasingly being applied to problems of shorter, more
pressing timescales and smaller, even regional, spatial scales. Increased spatial resolution
and the corresponding newly resolved physical features, however, represent a “gray area”
over which a key modeling assumption in the derivation of the primitive equations, i.e. the
hydrostatic approximation, breaks down. This break down calls into question the validity
of the primitive equations for use in the next generation of global ocean models and makes
highly suspect the results and predictions of current primitive equation regional models.

My interest is in examining nonhydrostatic effects in high-resolution regional ocean stud-
ies which include variable ocean bottom (topography) and density profiles. The primary
challenge of this research is to determine the range of applicability of hydrostatic ocean
models for climate and regional applications, and estimate whether nonhydrostatic effects
will be important enough to change model development from the hydrostatic primitive equa-
tions to the full nonhydrostatic equations.

This highlight attempts the following: 1) to frame the problem mathematically and 2)
present a preliminary result.

2 The 3D Inviscid Boussinesq Equations

Initial analysis begins with the inviscid primitive equations plus the “nonhydrostatic” terms
(underlined in below equations), as well as, linearization against a simple base state: U(z, y)
the zonal velocity, Φ(y, z) the pressure field normalized by a constant reference density (ρr),
and ρ(y, z) the density field. With small perturbations denoted by ′,

u′t + up

′
· ∇M = 0 (1)

Bt + up

′
· ∇Q = 0 (2)

v′t + fu′ + Φ′

y = 0 (3)

w′

t − Fu′ + Φ′

z − B = 0 (4)

v′y + w′

z = 0 (5)

where the bouyancy B ≡ −ρ′g/ρr, up ≡ (0, v, w), M ≡ U − fy + Fz (absolute momen-
tum), and Q = −FU + ∂Φ/∂z = −gρ/ρr (∝ potential temperature). Three results follow
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immediately: 1) the generation of u′ depends on the angle of trajectories compared with
base state M surfaces of slope My/Mz which contain a contribution from the nonhydrostatic
coriolis term F , 2) the generation of B depends on the angle of trajectories compared with
Q surfaces of slope Qy/Qz which also contain an F contribution, and 3) the zy-trajectories
may be written in terms of a streamfunction, i.e. w′ = ψy and v′ = −ψz .

In the manner of Hoskins (1978), several key and illuminating frequencies of the basic
flow may be defined based on the Brunt-vaisala frequency N , the thermal wind relation S,
and the base vorticity:

Ñ2 = N2
− FUz, S2 = fUz + FUy, W 2

k = f(f − Uy), W 2

j = f(F + Uz). (6)

Thus My/Mz = −W 2
k /W

2
j and Qy/Qz = −S2/Ñ2.

3 The Symmetric Instability

In the 1970s Stone showed that an initially steady sheared flow was unstable to three kinds
of instabilities (each with a characteristic length scale), which dominate in different regions
of Richardson number: when Ri > .95, the common baroclinic instability dominates, for
1/4 < Ri < .9 the symmetric instability, and for Ri < 1/4, the Kelvin-Helmholtz instability.
The symmetric instability has the appropriate length scale and (potentially) nonhydrostatic
character to be of interest.

In a normal mode analysis of eqns 1–5, ψ ∝ eiσt+kzΨ(y). Solving for the frequency σ, we
find a necessary condition for symmetric instability:

(

1 −
Uy

fo

)

Ri <

(

DF

U
+ 1

)2

(7)

Where Ri = D2(F 2 +N2)/U2 for vertical spatial scale D plotted below.
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Figure 1: The nonhydrostatic Coriolis term F relaxes the Ri condition potentially decreasing
the base flow stability.
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